Floating Point

C Bitwise Operations...

Computer Science 61C Fall 2021 McMahon and Weave

- We have the boolean operations
 - I I boolean or
 - && boolean and
- We also have bitwise operations
 - Treat the data as raw bits and apply them on a bit-by-bit basis
 - | bitwise or, 0b0011 | 0b0101 = 0b0111
 - & bitwise and, 0b0011 & 0b0101 = 0b0001
 - ^ bitwise exclusive or, 0b0011 ^ 0b0101 = 0b0110

And bit shift operations (Example using 5 bit values)

Computer Science 61C Fall 2021 McMahon and Weave

- a << b: Shift the value in a to the left by b bits, shifting in 0
 - Equivalent to multiplying by 2^b
 - 0b00101 << 2 = 0b10100
 - Bits off the left are just dropped
 - 0b10010 << 2 = 0b01000
- a >> b: Shift the value in a to the right by b bits
 - If a is signed, we sign extend (copy the MSB)
 - 0b10100 >> 2 = 0b11101
 - 0b00100 >> 2 = 0b00001
 - If a is unsigned, we zero extend
 - 0b10100 >> 2 = 0b00101
 - Not quite the same as dividing by 2^b due to how rounding works

3

IEEE-754

Computer Science 61C Fall 2021 McMahon and Wea

- Today, we'll be learning about a standardized format for representing floating point numbers in computers
- IEEE (Institute of Electronics and Electrical Engineers)
 - Standardizes methods for how we do things in computing
- IEEE-754
 - Established in 1985 to standardize how we represent floating point numbers in binary
 - Most recent update was published in 2019

4

Goals for IEEE 754 Floating-Point Standard

Computer Science 61C Fall 2021 McMahon and Wear

- Standard arithmetic for all computers
 - Important because computer representation of real numbers is approximate.
 Want same results on all computers.
- Keep as much precision as possible
- Help programmer with errors in real arithmetic
 - +∞, -∞, Not-A-Number (NaN), exponent overflow, exponent underflow, +/- zero
- Keep encoding that is somewhat compatible with two's complement
 - E.g., +0 in Fl. Pt. is 0 in two's complement
 - Make it possible to sort without needing to do floating-point comparisons

Scientific Notation

Computer Science 61C Fall 2021 McMahon and Wear

 In decimal, we use scientific notation to shorten the number of digits that numbers take up

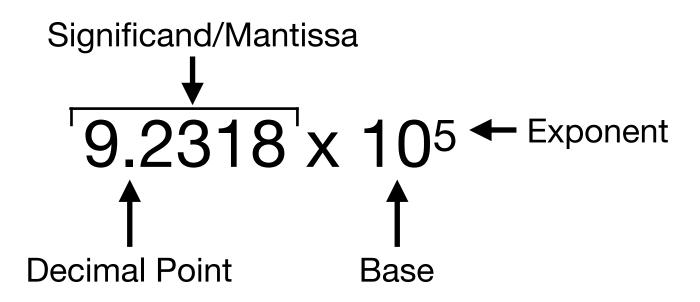
 $3.0 \times 10^8 \text{ m/s}$

6.022 x 10²³ mol⁻¹

Scientific Notation (Normalized Form)

Computer Science 61C Fall 2021

McMahon and Weaver



Representing Fractions in Binary

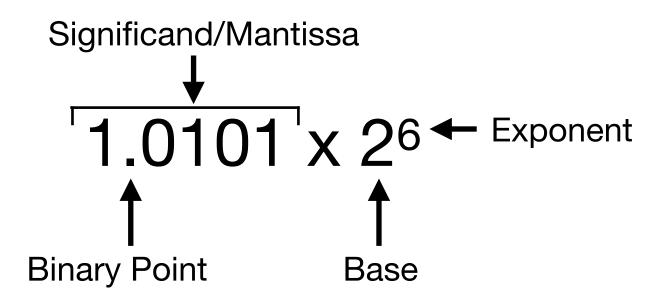
Computer Science 61C Fall 2021 McMahon and Weaver

21.625

Binary in Normalized Form

Computer Science 61C Fall 2021

McMahon and Weaver



Binary in Normalized Form Example

Computer Science 61C Fall 2021

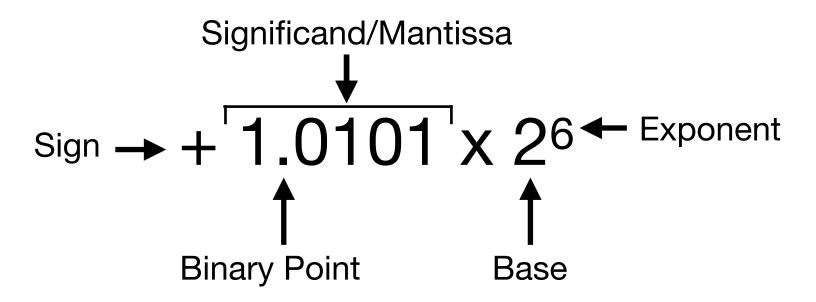
McMahon and Weaver

Convert 0b011010100 to normalized format.

 1.10101×2^7

Components of Floating Point Numbers

Computer Science 61C Fall 2021 McMahon and Weaver



Floating point diagram (32-bit)

Computer Science 61C Fall 2021

Sign

Computer Science 61C Fall 2021 McMahon and Weaver

- 0 means positive
- 1 means negative

Mantissa

Computer Science 61C Fall 2021 McMahon and Weav

- In normalized form, there must be one non-zero number to the left of the point
 - In binary, the only non-zero number is 1, which means that any binary number written in normalized format will have a 1 to the left of the point (except 0)
 - We can save room by not storing this 1!
- Pad with zeros to the right

1.010110 x 2⁴

0101100000000000000000

Exponent

Computer Science 61C Fall 2021 McMahon and Wear

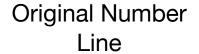
 Exponent is written in biased notation so that the smallest number is written as all zeros.

- The range of the exponent is [-126, 127].
- The exponent is biased by adding 127 to get the number into the range [1, 254]
 - 0 and 255 have special meanings

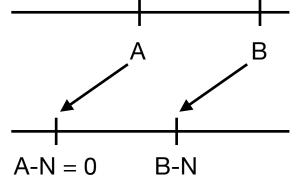
Exponent Review of Bias Notation

Computer Science 61C Fall 2021

McMahon and Weaver



Biased Number Line



Confusion over bias notation

Computer Science 61C Fall 2021 McMahon and Wear

- There are different notations with bias encoding
- It's not about memorizing a formula, I just gave one because I know some people prefer that
- It's important to think about the direction in which we are trying to shift the number line
 - If we are trying to shift the number line to the right, then we should be increasing the lower and upper bounds
 - If we are trying to shift the number line to the left, then we should be decreasing the lower and upper bounds

Exponent Why do we use bias notation?

Computer Science 61C Fall 2021

McMahon and Weaver

- Comparison is a common operation (<, >, etc)
- It's really easy to perform comparisons on biased values because you can just perform an unsigned comparison

Exponent

Computer Science 61C Fall 2021

McMahon and Weaver

- Bias formula: $N = -(2^{n-1}-1)$
- For IEEE-754 32-bit floating point numbers, there are 8 exponent bits
 - Bias = $-(2^{8-1}-1) = -127$

Floating Point

Computer Science 61C Fall 2021

McMahon and Weaver

(-1)^S x 1.mantissa x 2^{exponent-127}

Floating Point Examples

Computer Science 61C Fall 2021

McMahon and Weaver

1 | 10000001 | 11100000000000000000000

```
(-1)<sup>S</sup> x 1.mantissa x 2<sup>exponent-127</sup>
```

$$(-1)^1 \times 1.111 \times 2^{129-127}$$

-7.5

Floating Point Examples

Computer Science 61C Fall 2021 McMahon and Weave

Convert 123.4375 to IEEE-754 32-bit notation

$$123 = 64 + 32 + 16 + 8 + 2 + 1$$

$$0.4375 = 1/4 + 1/8 + 1/16$$

0111

1111011.0111

1.1110110111 x 2⁶

$$Sign = 0$$

Exponent =
$$6 + 127 = 133$$

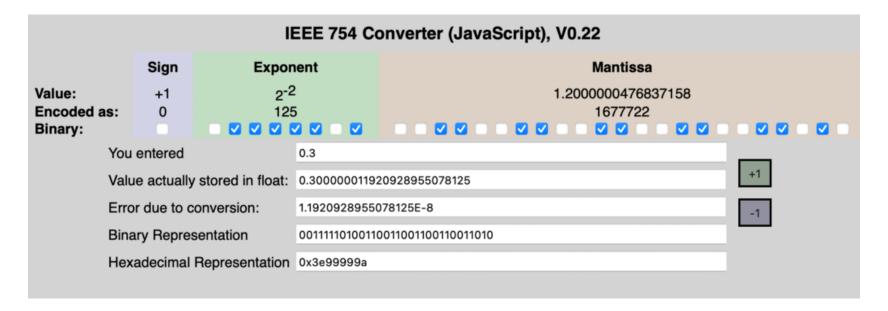
Mantissa = 1110110111

0 | 10000101 | 11101101110000000000000

Floating Point Tool

Computer Science 61C Fall 2021 McMahon and Weaver

https://www.h-schmidt.net/FloatConverter/IEEE754.html



Rounding

Computer Science 61C Fall 2021

McMahon and Weaver

- Rounding can occur
 - During a calculation
 - During conversion
 - Double precision -> single precision value
 - Floating point -> integer

Rounding Modes

Computer Science 61C Fall 2021 McMahon and Wear

 Round to Nearest – round to nearest number; if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit, which means it is rounded up 50% of the time

- 2.4 -> 2 2.5-> 2
- -2.6 -> -3 -3.5 -> -4
- Round toward 0 (truncate)
 - 2.001 -> 2
 - -2.999 -> -2
- Round toward +∞
 - 2.001 -> 3
 - -2.999 -> -2
- Round toward –∞
 - 1.999 -> 1
 - -1.001-> -2

How to Represent 0?

Computer Science 61C Fall 2021

McMahon and Weaver

- Sign = 0 or 1
- Exponent = all zeros
- Mantissa = all zeros

Floating Point Chart

Computer Science 61C Fall 2021

McMahon and Weaver

Туре	Exponent	Mantissa
Regular Number	1-254	Anything
Zero	All zeros	All zeros

How to Represent Infinity?

Computer Science 61C Fall 2021 McMahon and Wear

- Sign = 0 or 1 (corresponds to if its positive or negative infinity)
- Exponent = all ones
- Mantissa = all zeros

Floating Point Chart

Computer Science 61C Fall 2021

McMahon and Weaver

Туре	Exponent	Mantissa
Regular Number	1-254	Anything
Zero	All zeros	All zeros
Infinity	All ones (255)	All zeros

NaN (Not A Number)

Computer Science 61C Fall 2021 McMahon and Wear

- What happens if I take the square root of a negative number or divide by zero?
 - The result not representable or is undefined in computing systems
- Any operation that is not representable or is undefined is encoded as NaN (Not A Number)

What happens to NaN values?

Computer Science 61C Fall 2021 McMahon and Wear

- Usually, NaN values are propagated through arithmetic operations to allow the user to see that some error occurred during the calculation that resulted in a NaN somewhere along the way
- There are a couple of exceptions. We don't cover those in this class

Encoding NaN in IEEE-754

Computer Science 61C Fall 2021 McMahon and Weaver

- Sign = 0 or 1
- Exponent = all ones
- Mantissa = nonzero
 - Allows for the definition of multiple distinct NaN values

Floating Point Chart

Computer Science 61C Fall 2021 McMahon and Weaver

Туре	Exponent	Mantissa
Regular Number	1-254	Anything
Zero	All zeros	All zeros
Infinity	All ones (255)	All zeros
NaN	All ones (255)	Nonzero

Range of Floating Point Values

Computer Science 61C Fall 2021

McMahon and Weav

What is the smallest positive number that we can represent?

0 | 00000001 | 0000000000000000000000

(-1)^S x 1.mantissa x 2^{exponent-127}

 1×2^{-126}

2-126

Range of Floating Point Values

Computer Science 61C Fall 2021

McMahon and Weaver

What is the largest positive number that we can represent?

```
0 | 11111110 | 1111111111111111111111
               (-1)<sup>S</sup> x 1.mantissa x 2<sup>exponent-127</sup>
      (-1)^0 x 1.11111111111111111111111111 x 2^{254-127}
    \sum_{i=1}^{n-1} 2^{i} = 2^{n} - 1  2^{-23}(2^{22} + 2^{21} + \dots + 1)
                     2^{-23}(2^{23}-1) = 1 - 2^{-23}
               Implicit 1 - 1 - 2-23
                            2 - 2-23
                       (2 - 2^{-23}) \times 2^{127}
```


Range of Floating Point Values

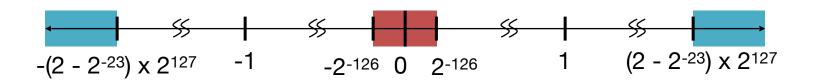
Computer Science 61C Fall 2021 McMahon and Weave

Positive Range

• [2⁻¹²⁶, (2 - 2⁻²³) x 2¹²⁷]

Negative Range

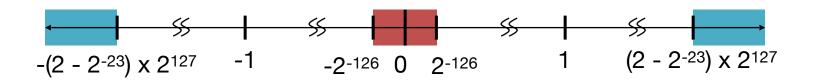
- The only thing that's different is the sign bit, so the range is the same
- [-(2 2⁻²³) x 2¹²⁷, -2⁻¹²⁶]



Range of Floating Point Values

Computer Science 61C Fall 2021 McMahon and Wea

- Overflow = When the magnitude of the value is too large to represent (blue regions)
- Underflow = When the magnitude of the value is too small to represent (red region)



Pause

Computer Science 61C Fall 2021 McMahon and Weaver

Computer Science 61C Fall 2021

McMahon and Wea

- We cannot represent every value between
 [2⁻¹²⁶, (2 2⁻²³) x 2¹²⁷] because we have a limited number of bits
- There are small gaps in the numbers that we can represent

(-1)^S x 1.mantissa x 2^{exponent-127}

Computer Science 61C Fall 2021 McMahon and Wear

What's the next smallest number greater than 2 that we can represent?

2

$$(-1)^{0}$$
 x 1.0 x 2¹

Exponent =
$$1 + 127 = 128$$

$$(-1)^0$$
 x 1.0000000000000000000001 x $2^{128-127}$

$$(1+2^{-23}) \times 2$$

(-1)^S x 1.mantissa x 2^{exponent-127}

Computer Science 61C Fall 2021

McMahon and Weav

What's the next smallest number greater than 4 that we can represent?

4

$$(-1)^0 \times 1.0 \times 2^2$$

Exponent =
$$2 + 127 = 129$$

0 | 10000001 | 0000000000000000000001

$$(-1)^0$$
 x 1.0000000000000000000001 x $2^{129-127}$

$$(1+2^{-23}) \times 2^2$$

(-1)^S x 1.mantissa x 2^{exponent-127}

Computer Science 61C Fall 2021 McMahon and Wear

- If x is the biased exponent and y is the significand
- How do we write our current number in terms of x and y?
 - $(1 + y) * 2^{(x-127)}$
- How do we write the next number in terms of x and y?
 - $(1 + y + 2^{-23}) * 2^{(x-127)}$
- Step-size = next_num curr_num
 - $(1 + y + 2^{-23}) * 2^{(x-127)} (1 + y) * 2^{(x-127)}$
 - 2-23 * 2(x-127)
 - 2(x-150)

Computer Science 61C Fall 2021

McMahon and Weaver

- Step size = $2^{(x-150)}$
- The step size increases by a factor of 2 for every time the exponent increases by 1

Computer Science 61C Fall 2021 McMahon and Wear

- The gap between 0 and the smallest positive number is 2-126
- What is the gap between the smallest positive number and the next smallest positive number is
 - **2**(x-150)
 - 2(1-150)
 - 2-149
- There is a larger gap between 0 and the smallest positive number due to the requirement of normalization with an implicit leading one
- Many calculations have values that fall near zero, so let's find a way to represent more values near zero

Floating Point Chart

Computer Science 61C Fall 2021 McMahon and Weaver

Туре	Exponent	Mantissa		
Regular Number	1-254	Anything		
Zero	All zeros	All zeros		
Infinity	All ones (255)	All zeros		
NaN	All ones (255)	Nonzero		
???	All zeros	Nonzero		

Denormalized Numbers

Computer Science 61C Fall 2021 McMahon and Weave

- Sign
 - Can be positive (0) or negative (1)
- Exponent
 - The exponent field is set to all zeros to encode the denormalized number
- Significand
 - We want to have an implicit leading 0 in order to be able to encode smaller values

Denormalized Numbers

Normalized (-1)^S x 1.mantissa x 2^{exponent-127}

Denormalized $(-1)^{s} \times 0.$ mantissa $\times 2^{-126}$

Exponent = 0 and we need to shift the binary point over by 1 to get an implicit leading 0

Denorm Range

Computer Science 61C Fall 2021 McMahon and Wear

What is the smallest positive denormalized number that can be represented?

0 | 00000000 | 00000000000000000000001

(-1)^S x 0.mantissa x 2⁻¹²⁶

2-23 x 2-126

2-149

What is the largest positive denormalized number that can be represented?

(-1)^S x 0.mantissa x 2⁻¹²⁶

 $(1-2^{-23}) \times 2^{-126}$

2-126 **-2**-149

Denorm Step Size

(-1)^S x 0.mantissa x 2⁻¹²⁶

Computer Science 61C Fall 20

McMahon and Weaver

- If y is the significand
- How do we write our current number in terms of y?
 - y * 2-126
- How do we write the next number in terms of y?
 - $(y + 2^{-23}) * 2^{-126}$
- Step-size = next_num curr_num
 - $(y + 2^{-23}) * 2^{-126} y * 2^{-126}$
 - 2-149
- The step size is the same for all denorm values because they all have the same exponent

Floating Point Chart

Computer Science 61C Fall 2021 McMahon and Weaver

Туре	Exponent	Mantissa		
Regular Number	1-254	Anything		
Zero	All zeros	All zeros		
Infinity	All ones (255)	All zeros		
NaN	All ones (255)	Nonzero		
Denorm	All zeros	Nonzero		

Denorm Examples

Computer Science 61C Fall 2021

McMahon and Weaver

Convert the following IEEE-754 floating point number to decimal

1 | 00000000 | 1101000000000000000000

Exponent is 0, mantissa is nonzero => denorm

$$(-1)^1 \times 0.1101 \times 2^{-126}$$

$$1/2 + 1/4 + 1/16 = 0.8125$$

$$-0.8125 \times 2^{-126}$$

Denorm Examples

Computer Science 61C Fall 2021

McMahon and Weaver

Write $1.5_{10} \times 2^{-129}$ in IEEE-754 Format

Put in normalized binary form

 $1.1_2 \times 2^{-129}$

Exponent is too big for normalized

Put in denorm form

 0.0011×2^{-126}

(-1)^S x 0.mantissa x 2⁻¹²⁶

0 | 00000000 | 0011000000000000000000

Floating Point Associativity

Computer Science 61C Fall 2021

McMahon and Wea

- Associativity
 - (X + Y) + Z == X + (Y + Z)
- Because of rounding errors, you can find Big and Small numbers such that:
 - (Small + Big) + Big != Small + (Big + Big)
- Ex: $x = -1.5 \times 10^{38}$, $y = 1.5 \times 10^{38}$, z = 1.0

$$x + (y + z)$$
 $(x + y) + z$
-1.5 x 10³⁸ + (1.5 x 10³⁸ + 1.0) $(-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0)$
-1.5 x 10³⁸ + (1.5 x 10³⁸) $0 + 1.0$

Other Floating Point Notations

Computer Science 61C Fall 2021

McMahon and Weav

 There are other floating point notations that exist to optimize for speed, precision, and/or accuracy

Туре	Sign	Exponent	Significand field	Total bits	Exponent bias	Bits precision	Number of decimal digits
Half (IEEE 754-2008)	1	5	10	16	15	11	~3.3
Single	1	8	23	32	127	24	~7.2
Double	1	11	52	64	1023	53	~15.9
x86 extended precision	1	15	64	80	16383	64	~19.2
Quad	1	15	112	128	16383	113	~34.0

https://en.wikipedia.org/wiki/Floating-point_arithmetic

(There are a lot more than this, these are just the basic ones)

